Tutorial 3 MD308/MI 308

- (1) Find the radius of convergence of the following power series
 - (a) $\sum_{n=0}^{\infty} (x+6)^n$.

 - (a) $\sum_{n=0}^{\infty} \frac{(x+0)^n}{10^n}$. (b) $\sum_{n=0}^{\infty} \frac{(x-3)^n}{10^n}$. (c) $\sum_{n=0}^{\infty} \frac{x^n}{10^n n \sqrt{n}}$. (d) $\sum_{n=0}^{\infty} \frac{nx^n}{4^n (n^2+1)}$. (e) $\sum_{n=0}^{\infty} x^n \ln x$. (f) $\sum_{n=0}^{\infty} (x+6)^n$. (g) $\sum_{n=0}^{\infty} \frac{x^n}{n(\ln x)^2}$.
- (2) Find the singular point of the following ODE and specify the singularity.
 - (a) $x^2y'' + (x+x^3)y' 2y = 0$.
 - (b) $x^2y'' + (\sin x)y' 2(\cos x)y = 0$.
 - (c) $x^2y'' + (e^x + x^{1/3})y' + (x^2 n^2)y = 0.$
 - (d) $x^2y'' + (x+x^3)y' 2y = 0$.
 - (e) $y'' + (\ln|x|)y' + xy = 0$.
 - (f) $(x-2)\frac{d^2y}{dx^2} + (\cot \pi x)\frac{dy}{dx} + (\csc^2 \pi x)y = 0.$ (g) $x(1+x^2)y'' + (\cos x)y' + (1-3x+x^2)y = 0.$

 - (h) $xy'' + e^x y' + (\cos x)y = 0$.
 - (i) $(x \sin x)y'' + 3y' + 3xy = 0$.
- (3) Let $y = \phi(x)$ be a bounded solution of the equation $(1-x^2)y'' 2xy' + 30y = 0$. Find the value of $\int_{-1}^{1} (1 + x^3 + x^5) \phi(x) dx$.
- (4) Find the indicial equation for $x(1+x^2)y'' + (\cos x)y' + (1-3x+x^2)y = 0$.
- (5) Find the power series solution of the following differential equations
 - (a) x(x+1)y' (2x+1)y = 0.
 - (b) (x+1)y' + 2xy = 0.
 - (c) $(1+x^2)y'' 4y = 0$.
 - (d) $(4+x^2)y'' 6xy' + 8y = 0.$
 - (e) y'' + xy' y = 0.
 - (f) $(2+x^2)y'' 2xy' + 3y = 0$, y(1) = 1, y'(1) = -1.
- (6) Find the power series solution of the following differential equations
 - (a) 2xy'' + y' + xy = 0.
 - (b) $2x^2y'' + xy' + x^2y = 0$.
 - (c) $2x^2y'' + xy' + (x^2 1)y = 0$.
 - (d) $x^2y'' + (x^2 + 1/4)y = 0$.
- (7) Find the power series solution of the following differential equations
 - (a) $(1-x^2)y''-xy'+p^2y=0$, $p\in\mathbb{R}$ near the point $x=\pm 1$ (Chebyshev equation).
 - (b) xy'' + (1-x)y' + py = 0, $p \in \mathbb{R}$ near the point x = 0 (Lagurre equation).
 - (c) $(1-x^2)y''-2xy'+p(p+1)y=0$, $p\in\mathbb{R}$ near the point $x=\pm 1$ (Legendre eqution).
- (8) Determine whether the point at infinity is an ordinary point, a regular point or an irregular singular point.
 - (a) $x^2y'' + xy' + 2y = 0$
 - (b) y'' 2xy' + py = 0.
 - (c) $x^2y'' + xy' + (x^2 p^2)y = 0$.
 - (d) $(1-x^2)y'' 2xy' + p(p+1)y = 0$.
 - (e) y'' xy = 0.
- (9) Solve the Bessel's equation $x^2y'' + xy' + (x^2 p^2)y = 0$ for $p = 0, \frac{1}{2}$.
- (10) Show that the Bessel's equation $x^2y'' + xy' + (x^2 \frac{1}{4})y = 0$ can be transformed into v'' + v = 0 by the change of variable $y = x^{-1/2}v(x)$. Conclude that $y_1 = x^{-1/2}\cos x$ and $y_2 = x^{-1/2} \sin x$ are solutions of the Bessel's equation of order $\frac{1}{2}$.